Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
New England Journal of Medicine ; 382(16):1564-1567, 2020.
Article in English | GIM | ID: covidwho-1716965

ABSTRACT

The objective of the article was to evaluate the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model. Results showed that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. The results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, and they provide information for pandemic mitigation efforts.

2.
Communications Physics ; 4(1):8, 2021.
Article in English | Web of Science | ID: covidwho-1238022

ABSTRACT

In the absence of drugs and vaccines, policymakers use non-pharmaceutical interventions such as social distancing to decrease rates of disease-causing contact, with the aim of reducing or delaying the epidemic peak. These measures carry social and economic costs, so societies may be unable to maintain them for more than a short period of time. Intervention policy design often relies on numerical simulations of epidemic models, but comparing policies and assessing their robustness demands clear principles that apply across strategies. Here we derive the theoretically optimal strategy for using a time-limited intervention to reduce the peak prevalence of a novel disease in the classic Susceptible-Infectious-Recovered epidemic model. We show that broad classes of easier-to-implement strategies can perform nearly as well as the theoretically optimal strategy. But neither the optimal strategy nor any of these near-optimal strategies is robust to implementation error: small errors in timing the intervention produce large increases in peak prevalence. Our results reveal fundamental principles of non-pharmaceutical disease control and expose their potential fragility. For robust control, an intervention must be strong, early, and ideally sustained. The COVID-19 pandemic has demonstrated the need for non-pharmaceutical epidemic mitigation strategies that can be effective even if they are limited in duration. Here, the authors derive analytically optimal and near-optimal time-limited strategies for limiting the epidemic peak in the Susceptible-Infectious-Recovered model and show that, due to the sensitivity of such strategies to implementation errors, timely action is fundamental to non-pharmaceutical disease control.

SELECTION OF CITATIONS
SEARCH DETAIL